Теория вероятностей: различия между версиями
Перейти к навигации
Перейти к поиску
Artem (обсуждение | вклад) |
Artem (обсуждение | вклад) |
||
(не показана 1 промежуточная версия этого же участника) | |||
Строка 61: | Строка 61: | ||
= Сочетания с повторениями = | = Сочетания с повторениями = | ||
Множество <math>n = | Множество <math>n = 4</math> → <math>\{1, 2, 3, 4\}</math>. | ||
Сочетания <math>k = 2</math> → <math>\{1, 1\}</math>, <math>\{2, 2\}</math>, <math>\{3, 3\}</math>, <math>\{4, 4\}</math>, <math>\{1, 2\}</math>, <math>\{1, 3\}</math>, <math>\{1, 4\}</math>, <math>\{2, 3\}</math>, <math>\{2, 4\}</math>, <math>\{3, 4\}</math> | Сочетания с повторениями <math>k = 2</math> → <math>\{1, 1\}</math>, <math>\{2, 2\}</math>, <math>\{3, 3\}</math>, <math>\{4, 4\}</math>, <math>\{1, 2\}</math>, <math>\{1, 3\}</math>, <math>\{1, 4\}</math>, <math>\{2, 3\}</math>, <math>\{2, 4\}</math>, <math>\{3, 4\}</math> | ||
Число сочетаний с повторениями | Число сочетаний с повторениями |
Текущая версия от 00:32, 5 января 2023
Интуитивно непонятная тема, но я копаюсь в ней.
Правило суммы
Есть 2 непересекающихся множества и . Число способов выбрать один элемент
Правило произведения
Необходимо выполнить k действий. Каждое действие можно выполнить способами соответственно. Все действия можно выполнить
способами.
Размещения
- число элементов множества. размер подмножества
Множество → .
Размещения → , , ...
Число размещений
Перестановки
Множество → .
Перестановки → , , , ...
Число перестановок
Сочетания
Множество → .
Сочетания → , , , , ,
Число сочетаний
Сочетания непересекающихся подмножеств
Перестановки с повторениями
Сочетания с повторениями
Множество → .
Сочетания с повторениями → , , , , , , , , ,
Число сочетаний с повторениями