Машинное обучение и Большие данные

Материал из Artem Aleksashkin's Wiki
Перейти к навигации Перейти к поиску

Ai-brain.jpg

Hardware

Software

wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/11.2.2/local_installers/cuda-repo-ubuntu2004-11-2-local_11.2.2-460.32.03-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2004-11-2-local_11.2.2-460.32.03-1_amd64.deb
sudo apt-key add /var/cuda-repo-ubuntu2004-11-2-local/7fa2af80.pub
sudo apt-get update
sudo apt-get -y install cuda nvidia-cuda-toolkit
sudo update-alternatives --install /usr/bin/python python /usr/bin/python2 1
sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 2
sudo update-alternatives --config python
$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Sun_Jul_28_19:07:16_PDT_2019
Cuda compilation tools, release 10.1, V10.1.243
Python 3.8.5 (default, Jan 27 2021, 15:41:15) 
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> tf.config.list_physical_devices("GPU")
2021-03-29 00:19:23.520023: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2021-03-29 00:19:23.575281: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-03-29 00:19:23.575801: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties: 
pciBusID: 0000:04:00.0 name: GeForce GTX 760 computeCapability: 3.0
coreClock: 1.15GHz coreCount: 6 deviceMemorySize: 3.94GiB deviceMemoryBandwidth: 179.05GiB/s
2021-03-29 00:19:23.576789: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2021-03-29 00:19:23.581937: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2021-03-29 00:19:23.583502: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2021-03-29 00:19:23.585776: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2021-03-29 00:19:23.591336: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2021-03-29 00:19:23.593271: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2021-03-29 00:19:23.701034: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2021-03-29 00:19:23.701468: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-03-29 00:19:23.702637: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-03-29 00:19:23.703486: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1657] Ignoring visible gpu device (device: 0, name: GeForce GTX 760, pci bus id: 0000:04:00.0, compute capability: 3.0) with Cuda compute capability 3.0. The minimum required Cuda capability is 3.5.
[]
git clone https://github.com/tensorflow/tensorflow.git
cd ./tensorflow
git checkout r2.2

sudo apt install apt-transport-https curl gnupg
curl -fsSL https://bazel.build/bazel-release.pub.gpg | gpg --dearmor > bazel.gpg
sudo mv bazel.gpg /etc/apt/trusted.gpg.d/
echo "deb [arch=amd64] https://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list
sudo apt update && sudo apt install bazel-2.0.0

Курсы

Большие данные

Методы

  • Теорема Байеса
  • Функции ошибки и регуляризация
  • Расстояние Кульбака-Лейблера и перекрестная энтропия
  • Градиентный спуск: основы
  • Граф вычислений и дифференцирование на нем
  • Перцептрон
  • Глубокие нейронные сети
  • Классификация
  • Кластеризация
  • Регрессия
  • Машинное зрение
  • Метод к-средних
  • word2vec

Библиотеки

Датасеты

Железо и драйверы

Темы

Face Recognition

Speech Recognition

Image Object Recognition

Anomaly Detection

Prediction

StereoVision

Некоторые полезные ресурсы